Sensors (Aug 2024)

Enhancing Wireless Network Efficiency with the Techniques of Dynamic Distributed Load Balancing: A Distance-Based Approach

  • Mustafa Mohammed Hasan Alkalsh,
  • Adrian Kliks

DOI
https://doi.org/10.3390/s24165406
Journal volume & issue
Vol. 24, no. 16
p. 5406

Abstract

Read online

The unique combination of the high data rates, ultra-low latency, and massive machine communication capability of 5G networks has facilitated the development of a diverse range of applications distinguished by varying connectivity needs. This has led to a surge in data traffic, driven by the ever-increasing number of connected devices, which poses challenges to the load distribution among the network cells and minimizes the wireless network performance. In this context, maintaining network balance during congestion periods necessitates effective interaction between various network components. This study emphasizes the crucial role that mobility management plays in mitigating the uneven load distribution across cells. This distribution is a significant factor impacting network performance, and effectively managing it is essential for ensuring optimal network performance in 5G and future networks. The study investigated the complexities associated with congested cells in wireless networks to address this challenge. It proposes a Dynamic Distance-based Load-Balancing (DDLB) algorithm designed to facilitate efficient traffic distribution among contiguous cells and utilize available resources more efficiently. The algorithm reacts with congested cells and redistributes traffic to its neighboring cells based on specific network conditions. As a result, it alleviates congestion and enhances overall network performance. The results demonstrate that the DDLB algorithm significantly improves key metrics, including load distribution and rates of handover and radio link failure, handover ping-pong, and failed attached requests.

Keywords