Redox Biology (Jan 2014)

Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity

  • Seema Bansal,
  • Gopa Biswas,
  • Narayan G. Avadhani

DOI
https://doi.org/10.1016/j.redox.2013.07.004
Journal volume & issue
Vol. 2, no. C
pp. 273 – 283

Abstract

Read online

The inducible form of Heme Oxygenase-1 (HO-1), a major endoplasmic reticulum (ER) associated heme protein, is known to play important roles in protection against oxidative and chemical stress by degrading free heme released from degradation of heme proteins. In this study we show that induced expression of HO-1 by subjecting macrophage RAW-264.7 cells to chemical or physiological hypoxia resulted in significant translocation of HO-1 protein to mitochondria. Transient transfection of COS-7 cells with cloned cDNA also resulted in mitochondrial translocation of HO-1. Deletion of N-terminal ER targeting domain increased mitochondrial translocation under the transient transfection conditions. Mitochondrial localization of both intact HO-1 and N-terminal truncated HO-1 caused loss of heme aa-3 and cytochrome c oxidase (CcO) activity in COS-7 cells. The truncated protein, which localizes to mitochondria at higher levels, induced substantially steeper loss of CcO activity and reduced heme aa3 content. Furthermore, cells expressing mitochondria targeted HO-1 also induced higher ROS production. Consistent with dysfunctional state of mitochondria induced by HO-1, the mitochondrial recruitment of autophagy markers LC-3 and Drp-1 was also increased in these cells. Chronic ethanol feeding in rats also caused an increase in mitochondrial HO-1 and decrease in CcO activity. These results show that as opposed to the protective effect of the ER associated HO-1, mitochondria targeted HO-1 under normoxic conditions induces mitochondrial dysfunction.

Keywords