Geoscientific Model Development (Feb 2023)
Bayesian transdimensional inverse reconstruction of the Fukushima Daiichi caesium 137 release
Abstract
The accident at the Fukushima Daiichi nuclear power plant (NPP) yielded massive and rapidly varying atmospheric radionuclide releases. The assessment of these releases and of the corresponding uncertainties can be performed using inverse modelling methods that combine an atmospheric transport model with a set of observations and have proven to be very effective for this type of problem. In the case of the Fukushima Daiichi NPP, a Bayesian inversion is particularly suitable because it allows errors to be modelled rigorously and a large number of observations of different natures to be assimilated at the same time. More specifically, one of the major sources of uncertainty in the source assessment of the Fukushima Daiichi NPP releases stems from the temporal representation of the source. To obtain a well-time-resolved estimate, we implement a sampling algorithm within a Bayesian framework – the reversible-jump Markov chain Monte Carlo – in order to retrieve the distributions of the magnitude of the Fukushima Daiichi NPP caesium 137 (137Cs) source as well as its temporal discretization. In addition, we develop Bayesian methods that allow us to combine air concentration and deposition measurements as well as to assess the spatio-temporal information of the air concentration observations in the definition of the observation error matrix. These methods are applied to the reconstruction of the posterior distributions of the magnitude and temporal evolution of the 137Cs release. They yield a source estimate between 11 and 24 March as well as an assessment of the uncertainties associated with the observations, the model, and the source estimate. The total reconstructed release activity is estimated to be between 10 and 20 PBq, although it increases when the deposition measurements are taken into account. Finally, the variable discretization of the source term yields an almost hourly profile over certain intervals of high temporal variability, signalling identifiable portions of the source term.