Biomimetics (Jul 2024)

Anthropomorphic Robotic Hand Prosthesis Developed for Children

  • Pablo Medina-Coello,
  • Blas Salvador-Domínguez,
  • Francisco J. Badesa,
  • José María Rodríguez Corral,
  • Henrik Plastrotmann,
  • Arturo Morgado-Estévez

DOI
https://doi.org/10.3390/biomimetics9070401
Journal volume & issue
Vol. 9, no. 7
p. 401

Abstract

Read online

The use of both hands is a common practice in everyday life. The capacity to interact with the environment is largely dependent on the ability to use both hands. A thorough review of the current state of the art reveals that commercially available prosthetic hands designed for children are very different in functionality from those developed for adults, primarily due to prosthetic hands for adults featuring a greater number of actuated joints. Many times, patients stop using their prosthetic device because they feel that it does not fit well in terms of shape and size. With the idea of solving these problems, the design of HandBot-Kid has been developed with the anthropomorphic qualities of a child between the ages of eight and twelve in mind. Fitting the features of this age range, the robotic hand has a length of 16 cm, width of 7 cm, thickness of 3.6 cm, and weight of 328 g. The prosthesis is equipped with a total of fifteen degrees of freedom (DOF), with three DOFs allocated to each finger. The concept of design for manufacturing and assembly (DFMA) has been integrated into the development process, enabling the number of parts to be optimized in order to reduce the production time and cost. The utilization of 3D printing technology in conjunction with aluminum machining enabled the manufacturing process of the robotic hand prototype to be streamlined. The flexion–extension movement of each finger exhibits a trajectory that is highly similar to that of a real human finger. The four-bar mechanism integrated into the finger design achieves a mechanical advantage (MA) of 40.33% and a fingertip pressure force of 10.23 N. Finally, HandBot-Kid was subjected to a series of studies and taxonomical tests, including Cutkosky (16 points) and Kapandji (4 points) score tests, and the functional results were compared with some commercial solutions for children mentioned in the state of the art.

Keywords