Saudi Journal of Biological Sciences (Dec 2021)

Experimental and theoretical analyses of nano-silver for antibacterial activity based on differential crystal growth temperatures

  • Tariq Munir,
  • Arslan Mahmood,
  • Fahad Shafiq,
  • Muhammad Fakhar-e-Alam,
  • Muhammad Atif,
  • Ali Raza,
  • Shafiq Ahmad,
  • Khurram Saleem Alimgeer,
  • Nadeem Abbas

Journal volume & issue
Vol. 28, no. 12
pp. 7561 – 7566

Abstract

Read online

The modulation of antimicrobial properties of nanomaterials can be achieved through various physical and chemical processes, which ultimately affect subsequent properties. In this study, the antibacterial potential of nano-silver was investigated at 0.5, 1.0, 2.0, and 3.0 g/L, and its differential temperature synthesis was achieved at 20, 50, and 70 °C using the solvent evaporation method. Nano-silver particles exhibited FCC (octahedral) crystalline structure with crystallite sizes ranging between 28 and 39 nm calculated using XRD analysis. Moreover, irregular and non-uniform surface morphology was evident from SEM micrographs. The UV–Vis absorbance spectrum of nano-silver exhibited wave maxima at 433 nm, while the FTIR analysis depicted different modes of vibration indicating the CH, OH, C≡C, C-Cl, and CH2 functional groups attached to the surface. Lastly, nano-silver caused prominent inhibition (12.5 mm) in the Escherichia coli growth, particularly at 70 °C synthesis temperature and 3.0 g/L dose. It is concluded that both the nano-silver crystal growth temperature and dose contributed substantially to bacterial growth inhibition linked with subsequent size, shape-dependent properties.

Keywords