EPJ Web of Conferences (Jan 2017)

How well do we understand the reaction rate of C burning?

  • Courtin S.,
  • Jiang C.L.,
  • Fruet G.,
  • Auranen K.,
  • Avila M.L.,
  • Ayangeakaa A.D.,
  • Back B.B.,
  • Bottoni S.,
  • Carpenter M.,
  • Dickerson C.,
  • DiGiovine B.,
  • Greene J.P.,
  • Henderson D.J.,
  • Hoffman C.R.,
  • Janssens R.V.F.,
  • Kay B.P.,
  • Kuvin S.A.,
  • Lauritsen T.,
  • Pardo R.C.,
  • Rehm K.E.,
  • Santiago-Gonzalez D.,
  • Sethi J.,
  • Seweryniak D.,
  • Talwar R.,
  • Ugalde C.,
  • Zhu S.,
  • Deibel C.M.,
  • Marley S.T.,
  • Bourgin D.,
  • Haas F.,
  • Heine M.,
  • Montanari D.,
  • Jenkins D.G.,
  • Morris L.G.,
  • Lefebvre-Schuhl A.,
  • Almaraz-Calderon S.,
  • Fang X.,
  • Tang X.D.,
  • Alcorta M.,
  • Bucher B.,
  • Albers M.,
  • Bertone P.

DOI
https://doi.org/10.1051/epjconf/201716300011
Journal volume & issue
Vol. 163
p. 00011

Abstract

Read online

Carbon burning plays a crucial role in stellar evolution, where this reaction is an important route for the production of heavier elements. A particle-γ coincidence technique that minimizes the backgrounds to which this reaction is subject and provides reliable cross sections has been used at the Argonne National Laboratory to measure fusion cross-sections at deep sub-barrier energies in the 12C+12C system. The corresponding excitation function has been extracted down to a cross section of about 6 nb. This indicates the existence of a broad S-factor maximum for this system. Experimental results are presented and discussed.