Remote Sensing (Dec 2018)
A Deep Convolution Neural Network Method for Land Cover Mapping: A Case Study of Qinhuangdao, China
Abstract
Land cover and its dynamic information is the basis for characterizing surface conditions, supporting land resource management and optimization, and assessing the impacts of climate change and human activities. In land cover information extraction, the traditional convolutional neural network (CNN) method has several problems, such as the inability to be applied to multispectral and hyperspectral satellite imagery, the weak generalization ability of the model and the difficulty of automating the construction of a training database. To solve these problems, this study proposes a new type of deep convolutional neural network based on Landsat-8 Operational Land Imager (OLI) imagery. The network integrates cascaded cross-channel parametric pooling and average pooling layer, applies a hierarchical sampling strategy to realize the automatic construction of the training dataset, determines the technical scheme of model-related parameters, and finally performs the automatic classification of remote sensing images. This study used the new type of deep convolutional neural network to extract land cover information from Qinhuangdao City, Hebei Province, and compared the experimental results with those obtained by traditional methods. The results show that: (1) The proposed deep convolutional neural network (DCNN) model can automatically construct the training dataset and classify images. This model performs the classification of multispectral and hyperspectral satellite images using deep neural networks, which improves the generalization ability of the model and simplifies the application of the model. (2) The proposed DCNN model provides the best classification results in the Qinhuangdao area. The overall accuracy of the land cover data obtained is 82.0%, and the kappa coefficient is 0.76. The overall accuracy is improved by 5% and 14% compared to the support vector machine method and the maximum likelihood classification method, respectively.
Keywords