Materials (Aug 2022)

Influence of the Addition of Dispersible Color Powder and Polyacrylic Emulsion on the Durability of Cement Mortar

  • Chih-Ming Huang,
  • Her-Yung Wang,
  • Wein-Duo Yang,
  • Tien-Chun Kao,
  • Sing-Yuan Fang

DOI
https://doi.org/10.3390/ma15155305
Journal volume & issue
Vol. 15, no. 15
p. 5305

Abstract

Read online

Cement mortar can be colored using color additive technology to give colorful facades to the surfaces of buildings, and to beautify the environment. In this study, weight ratios of color powder/cement at 1:80, 1:40, and 1:27, and polyacrylic emulsion/cement at a ratio of 1:5 were added as pigments to cement mortar; the fresh properties, slump, slump flow, hardened properties, compressive strength, flexural strength, ultrasonic pulse velocity, durability, surface electrical resistivity and thermal conductivity of the colored cement mortar were then examined. The results showed that adding color powder/cement at 1:80 and polyacrylic emulsion/cement at 1:5 gives the best water/cement (W/C) ratio, which equals 0.5; this can effectively improve the hardness and durability of colored cement mortar. At 28 days of aging, the strength of the various colored cement mortars was maintained at 33.1–36.8 MPa. The acrylic-based emulsion significantly improved the flexural strength of the specimen. At 91 days of aging, all of the cement mortars exceeded the control group, with an anti-bay strength of 19.9–21.7 MPa, and the strength increased with aging. Adding appropriate amounts of inorganic color powder and mixing water can effectively enhance the fresh and hardened properties and durability of the colored cement mortar, while polyacrylic emulsion may significantly improve the test pieces and flexural strength, which increases with age. Moreover, natural α-Fe2O3 (rust layer) is formed on the surface of the colored cement mortar samples through the addition of inorganic color powder that contains Fe(III) ion; this prevents the intrusion of noxious ions and thus increases the durability. All of the test pieces of colored cement mortar in this study had a surface resistance of over 20 kΩ-cm on the seventh day of the test period, meaning good surface compactness. In addition, because the thermal conductivity of the added inorganic color powder was higher than that of cement, the thermal conductivity was significantly improved.

Keywords