Biogeosciences (Oct 2016)

Hydrologically transported dissolved organic carbon influences soil respiration in a tropical rainforest

  • W.-J. Zhou,
  • H.-Z. Lu,
  • Y.-P. Zhang,
  • L.-Q. Sha,
  • D. A. Schaefer,
  • Q.-H. Song,
  • Y. Deng,
  • X.-B. Deng

DOI
https://doi.org/10.5194/bg-13-5487-2016
Journal volume & issue
Vol. 13, no. 19
pp. 5487 – 5497

Abstract

Read online

To better understand the effect of dissolved organic carbon (DOC) transported by hydrological processes (rainfall, throughfall, litter leachate, and surface soil water; 0–20 cm) on soil respiration in tropical rainforests, we detected the DOC flux in rainfall, throughfall, litter leachate, and surface soil water (0–20 cm), compared the seasonality of δ13CDOC in each hydrological process, and δ13C in leaves, litter, and surface soil, and analysed the throughfall, litter leachate, and surface soil water (0–20 cm) effect on soil respiration in a tropical rainforest in Xishuangbanna, south-west China. Results showed that the surface soil intercepted 94.4 ± 1.2 % of the annual litter leachate DOC flux and is a sink for DOC. The throughfall and litter leachate DOC fluxes amounted to 6.81 and 7.23 % of the net ecosystem exchange respectively, indicating that the DOC flux through hydrological processes is an important component of the carbon budget, and may be an important link between hydrological processes and soil respiration in a tropical rainforest. Even the variability in soil respiration is more dependent on the hydrologically transported water than DOC flux insignificantly, soil temperature, and soil-water content (at 0–20 cm). The difference in δ13C between the soil, soil water (at 0–20 cm), throughfall, and litter leachate indicated that DOC is transformed in the surface soil and decreased the sensitivity indices of soil respiration of DOC flux to water flux, which suggests that soil respiration is more sensitive to the DOC flux in hydrological processes, especially the soil-water DOC flux, than to soil temperature or soil moisture.