Redox Biology (Dec 2024)
Riboflavin kinase binds and activates inducible nitric oxide synthase to reprogram macrophage polarization
- Xiao Shan,
- Zemin Ji,
- Baochen Wang,
- Yanan Zhang,
- Hongyuan Dong,
- Weijia Jing,
- Yanzhao Zhou,
- Penghui Hu,
- Yan Cui,
- Zihan Li,
- Sujun Yu,
- Jinxue Zhou,
- Ting Wang,
- Long Shen,
- Yuping Liu,
- Qiujing Yu
Affiliations
- Xiao Shan
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China; Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Corresponding author. Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China.
- Zemin Ji
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Baochen Wang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Yanan Zhang
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Hongyuan Dong
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Weijia Jing
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Yanzhao Zhou
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; University of Electronic Science and Technology of China, Chengdu 611731, China
- Penghui Hu
- Department of Critical Care Medicine, Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
- Yan Cui
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Zihan Li
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Sujun Yu
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Inflammation Biology, State Key Laboratory of Experimental Hematology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
- Ting Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China
- Long Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Corresponding author. State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.
- Yuping Liu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China; Corresponding author.
- Qiujing Yu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China; Corresponding author.
- Journal volume & issue
-
Vol. 78
p. 103413
Abstract
Riboflavin kinase (RFK) is essential in riboflavin metabolism, converting riboflavin to flavin mononucleotide (FMN), which is further processed to flavin adenine dinucleotide (FAD). While RFK enhances macrophage phagocytosis of Listeria monocytogenes, its role in macrophage polarization is not well understood. Our study reveals that RFK deficiency impairs M(IFN-γ) and promotes M(IL-4) polarization, both in vitro and in vivo. Mechanistically, RFK interacts with inducible nitric oxide (NO) synthase (iNOS), which requires FMN and FAD as cofactors for activation, leading to increased NO production that alters energy metabolism by inhibiting the tricarboxylic acid cycle and mitochondrial electron transport chain. Exogenous FAD reverses the metabolic and polarization changes caused by RFK deficiency. Furthermore, bone marrow adoptive transfer from high-riboflavin-fed mice into wild-type tumor-bearing mice reprograms tumor-associated macrophage polarization and inhibits tumor growth. These results suggest that targeting RFK-iNOS or modulating riboflavin metabolism could be potential therapies for macrophage-related immune diseases.