Geoscience Frontiers (Nov 2020)

Petrology and geochemistry of South Mid-Atlantic Ridge (19°S) lava flows: Implications for magmatic processes and possible plume-ridge interactions

  • Haitao Zhang,
  • Xuefa Shi,
  • Chuanshun Li,
  • Quanshu Yan,
  • Yaomin Yang,
  • Zhiwei Zhu,
  • Hui Zhang,
  • Sai Wang,
  • Yili Guan,
  • Renjie Zhao

Journal volume & issue
Vol. 11, no. 6
pp. 1953 – 1973

Abstract

Read online

The South Mid-Atlantic Ridge (SMAR) 19°S segment, approximately located along the line of Saint Helena volcanic chain (created by Saint Helena mantle plume), is an ideal place to investigate the issue whether the ridge-hotpot interaction process affected the whole MAR. In this study, we present major and trace elemental compositions and Sr-Nd-Pb isotopic ratios of twenty fresh lava samples concentrated in a relatively small area in the SMAR 19°S segment. Major oxides compositions show that all samples are tholeiite. Low contents of compatible trace elements (e.g., Ni ​= ​239–594 ​ppm and Cr ​= ​456–1010 ​ppm) and low Fe/Mn (54–67) and Ce/Yb (0.65–1.5) ratios of these lavas show that their parental magmas are partially melted by a spinel lherzolite mantle source. Using software PRIMELT3, this study obtained mantle potential temperatures (Tp) beneath the segment of 1321–1348 ​°C, which is lower relative to those ridges influenced by mantle plumes. The asthenospheric mantle beneath the SMAR 19°S segment starts melting at a depth of ~63 ​km and ceases melting at ~43 ​km with a final melting temperature of ~1265 ​°C. The extent of partial melting is up to 16%–17.6% with an average adiabatic decompression value of 2.6%/kbar. The correlations of major oxides (CaO/Al2O3) and trace elements (Cr, Co, V) with MgO and Zr show that the parental magma experienced olivine and plagioclase fractional crystallization during its ascent to the surface.87Sr/86Sr (0.702398–0.702996), 143Nd/144Nd (0.513017–0.513177) and 206Pb/204Pb (18.444–19.477) ratios of these lavas indicate the mantle source beneath the SMAR 19°S segment is composed of a three-component mixture of depleted MORB mantle, PREMA mantle, and HIMU mantle materials. The simple, binary mixing results among components from plume-free SMAR MORB, Saint Helena plume and Tristan plume show that asthenospheric mantle beneath the SMAR 19°S segment may be polluted by both Saint Helena and Tristan plume enriched materials. The abovementioned mantle potential temperatures, together with the low Saint Helena (<10%) and Tristan (<5%) components remaining in the asthenospheric mantle at present, show that the physically ridge-hotspot interactions at SMAR 19°S segment may have ceased. However, the trace element and Sr-Nd-Pb isotopically binary mixing calculation results imply that these lavas tapped some enriched pockets left when Saint Helena and/or Tristan plume were once on the SMAR during earlier Atlantic rifted history.

Keywords