Lubricants (May 2018)

Vibration Technologies for Friction Reduction to Overcome Weight Transfer Challenge in Horizontal Wells Using a Multiscale Friction Model

  • Xing-Ming Wang,
  • Xing-Miao Yao

DOI
https://doi.org/10.3390/lubricants6020053
Journal volume & issue
Vol. 6, no. 2
p. 53

Abstract

Read online

Drag reduction technologies mainly include the mechanical method and the chemical method. Mechanical drag reduction technologies are widespread in the drilling field due to their environmental friendliness and ease of use. Vibration technologies are among some of the most-used mechanical drag reduction technologies. However, various types of vibration tools have the negative effect of obstructing the promotion and application of mechanical drag reduction technologies. This paper widely investigated the types and applications of vibration tools. A drilling agitator system and slider drilling technology were included. The structure and mechanism of the vibration tool were studied. A multiscale friction model was proposed based on the Dahl model according to the drilling environment. The model was verified using experimental data. The multiscale friction model was used to analyze the drag reduction mechanism and the effect of different kinds of vibration technologies. Simulations demonstrated that vibration technologies can effectively reduce the axial friction of the drill string. Longitudinal vibration can reduce the axial friction such that the dependence of the reduced coefficient of friction on the reduced velocity does not change significantly after the reduced oscillation amplitude exceeds the critical value of one. Axial friction decreased with the increasing amplitude of the radial vibration. However, the reduction effect has no relationship with the rate of penetration (ROP). Torsional vibration and rocking motion can reduce the axial friction force. When the oscillation amplitude increases, the axial friction decreases. The reduction effect of slider drilling technology is better than torsional vibration and two other technologies in terms of friction reduction.

Keywords