Épijournal de Géométrie Algébrique (Sep 2018)

A characterization of finite vector bundles on Gauduchon astheno-Kahler manifolds

  • Indranil Biswas,
  • Vamsi Pritham Pingali

DOI
https://doi.org/10.46298/epiga.2018.volume2.4209
Journal volume & issue
Vol. Volume 2

Abstract

Read online

A vector bundle E on a projective variety X is called finite if it satisfies a nontrivial polynomial equation with integral coefficients. A theorem of Nori implies that E is finite if and only if the pullback of E to some finite etale Galois covering of X is trivial. We prove the same statement when X is a compact complex manifold admitting a Gauduchon astheno-Kahler metric.

Keywords