An optical channel waveguide is a key solution to overcome signal propagation delay. For the benefits of miniaturization, development of microfabrication process for waveguides is demanded. TiO2 is one of the suitable candidates for the microfabricated waveguide because of the high refractive index and the transparency. In the present study, conventional microfabrication processes manufactured TiO2 channel waveguides with 1–20 μm width on oxidized Si substrates and the propagation loss was measured. The prepared channels successfully guided light of 632.8 nm along linear and Y-branched patterns. The propagation loss for the linear waveguide was 9.7 dB/cm.