PLoS ONE (Jan 2018)

Using time series analysis approaches for improved prediction of pain outcomes in subgroups of patients with painful diabetic peripheral neuropathy.

  • Joe Alexander,
  • Roger A Edwards,
  • Marina Brodsky,
  • Luigi Manca,
  • Roberto Grugni,
  • Alberto Savoldelli,
  • Gianluca Bonfanti,
  • Birol Emir,
  • Ed Whalen,
  • Steve Watt,
  • Bruce Parsons

DOI
https://doi.org/10.1371/journal.pone.0207120
Journal volume & issue
Vol. 13, no. 12
p. e0207120

Abstract

Read online

Prior work applied hierarchical clustering, coarsened exact matching (CEM), time series regressions with lagged variables as inputs, and microsimulation to data from three randomized clinical trials (RCTs) and a large German observational study (OS) to predict pregabalin pain reduction outcomes for patients with painful diabetic peripheral neuropathy. Here, data were added from six RCTs to reduce covariate bias of the same OS and improve accuracy and/or increase the variety of patients for pain response prediction. Using hierarchical cluster analysis and CEM, a matched dataset was created from the OS (N = 2642) and nine total RCTs (N = 1320). Using a maximum likelihood method, we estimated weekly pain scores for pregabalin-treated patients for each cluster (matched dataset); the models were validated with RCT data that did not match with OS data. We predicted novel 'virtual' patient pain scores over time using simulations including instance-based machine learning techniques to assign novel patients to a cluster, then applying cluster-specific regressions to predict pain response trajectories. Six clusters were identified according to baseline variables (gender, age, insulin use, body mass index, depression history, pregabalin monotherapy, prior gabapentin, pain score, and pain-related sleep interference score). CEM yielded 1766 patients (matched dataset) having lower covariate imbalances. Regression models for pain performed well (adjusted R-squared 0.90-0.93; root mean square errors 0.41-0.48). Simulations showed positive predictive values for achieving >50% and >30% change-from-baseline pain score improvements (range 68.6-83.8% and 86.5-93.9%, respectively). Using more RCTs (nine vs. the earlier three) enabled matching of 46.7% more patients in the OS dataset, with substantially reduced global imbalance vs. not matching. This larger RCT pool covered 66.8% of possible patient characteristic combinations (vs. 25.0% with three original RCTs) and made prediction possible for a broader spectrum of patients. Trial Registration: www.clinicaltrials.gov (as applicable): NCT00156078, NCT00159679, NCT00143156, NCT00553475.