Polymers (Aug 2020)

Influence of Epoxidized Cardanol Functionality and Reactivity on Network Formation and Properties

  • Emre Kinaci,
  • Erde Can,
  • John J. La Scala,
  • Giuseppe R. Palmese

DOI
https://doi.org/10.3390/polym12091956
Journal volume & issue
Vol. 12, no. 9
p. 1956

Abstract

Read online

Cardanol is a renewable resource based on cashew nut shell liquid (CNSL), which consists of a phenol ring with a C15 long aliphatic side chain in the meta position with varying degrees of unsaturation. Cardanol glycidyl ether was chemically modified to form side-chain epoxidized cardanol glycidyl ether (SCECGE) with an average epoxy functionality of 2.45 per molecule and was cured with petroleum-based epoxy hardeners, 4-4′-methylenebis(cyclohexanamine) and diethylenetriamine, and a cardanol-based amine hardener. For comparison, cardanol-based diphenol diepoxy resin, NC514 (Cardolite), and a petroleum-based epoxy resin, diglycidyl ether of bisphenol-A (DGEBA) were also evaluated. Chemical and thermomechanical analyses showed that for SCECGE resins, incomplete cure of the secondary epoxides led to reduced cross-link density, reduced thermal stability, and reduced elongation at break when compared with difunctional resins containing only primary epoxides. However, because of functionality greater than two, amine-cured SCECGE produced a Tg very similar to that of NC514 and thus could be useful in formulating epoxy with renewable cardanol content.

Keywords