Applied Sciences (Aug 2024)

A Robust and Efficient Method for Effective Facial Keypoint Detection

  • Yonghui Huang,
  • Yu Chen,
  • Junhao Wang,
  • Pengcheng Zhou,
  • Jiaming Lai,
  • Quanhai Wang

DOI
https://doi.org/10.3390/app14167153
Journal volume & issue
Vol. 14, no. 16
p. 7153

Abstract

Read online

Facial keypoint detection technology faces significant challenges under conditions such as occlusion, extreme angles, and other demanding environments. Previous research has largely relied on deep learning regression methods using the face’s overall global template. However, these methods lack robustness in difficult conditions, leading to instability in detecting facial keypoints. To address this challenge, we propose a joint optimization approach that combines regression with heatmaps, emphasizing the importance of local apparent features. Furthermore, to mitigate the reduced learning capacity resulting from model pruning, we integrate external supervision signals through knowledge distillation into our method. This strategy fosters the development of efficient, effective, and lightweight facial keypoint detection technology. Experimental results on the CelebA, 300W, and AFLW datasets demonstrate that our proposed method significantly improves the robustness of facial keypoint detection.

Keywords