AIMS Mathematics (Jan 2022)

Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators

  • CaiDan LaMao,
  • Shuibo Huang ,
  • Qiaoyu Tian,
  • Canyun Huang

DOI
https://doi.org/10.3934/math.2022233
Journal volume & issue
Vol. 7, no. 3
pp. 4199 – 4210

Abstract

Read online

In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators $ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), & x\in \Omega , \\ u(x)\ge 0,~~~~~ & x\in \Omega , \\ u(x)=0,~~~~~ & x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\ \end{matrix} \right. $ where $ 0 < s < 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.

Keywords