PLoS ONE (Jan 2013)
HnRNP A1/A2 and SF2/ASF regulate alternative splicing of interferon regulatory factor-3 and affect immunomodulatory functions in human non-small cell lung cancer cells.
Abstract
Heterogeneous nuclear ribonucleoparticule A1/A2 (hnRNP A1/A2) and splicing factor 2/alternative splicing factor (SF2/ASF) are pivotal for precursor messenger RNA (pre-mRNA) splicing. Interferon regulatory factor-3 (IRF-3) plays critical roles in host defense against viral and microbial infection. Truncated IRF-3 proteins resulting from alternative splicing have been identified and characterized as functional antagonists to full-length IRF-3. In this study, we examined the molecular mechanism for splicing regulation of IRF-3 pre-mRNA and first reported the regulatory effect of hnRNP A1/A2 and SF2/ASF on IRF-3 splicing and activation. RNA interference-mediated depletion of hnRNP A1/A2 or SF2/ASF in human non-small cell lung cancer (NSCLC) cells increased exclusion of exons 2 and 3 of IRF-3 gene and reduced expression levels of IRF-3 protein and IRF-3 downstream effector molecules interferon-beta and CXCL10/IP-10. In addition, direct binding of hnRNP A1 and SF2/ASF to specific binding motifs in IRF-3 intron 1 was confirmed by RNA electrophoretic mobility shift assay. Subsequent minigene splicing assay showed that IRF-3 minigenes with mutated hnRNPA 1/A2 or SF2/ASF binding motifs increased exclusion of exons 2 and 3. Moreover, knockdown of hnRNP A1/A2 or SF2/ASF in NSCLC cells reinforced phytohemagglutinin-induced tumor necrosis factor-alpha release by peripheral blood mononuclear cells (PBMC) but suppressed that of interleukin-10 in NSCLC/PBMC co-cultures. Taken together, our results suggest that specific knockdown for hnRNP A1/A2 or SF2/ASF increase exclusion of exons 2 and 3 of IRF-3 pre-mRNA and influence immunomodulatory functions of human NSCLC cells.