Archives of Electrical Engineering (Mar 2017)

Condition monitoring of induction motor bearing based on bearing damage index

  • Patel R.K.,
  • Giri V.K.

DOI
https://doi.org/10.1515/aee-2017-0008
Journal volume & issue
Vol. 66, no. 1
pp. 105 – 119

Abstract

Read online

The rolling element bearings are used broadly in many machinery applications. It is used to support the load and preserve the clearance between stationary and rotating machinery elements. Unfortunately, rolling element bearings are exceedingly prone to premature failures. Vibration signal analysis has been widely used in the faults detection of rotating machinery and can be broadly classified as being a stationary or non-stationary signal. In the case of the faulty rolling element bearing the vibration signal is not strictly phase locked to the rotational speed of the shaft and become “transient” in nature. The purpose of this paper is to briefly discuss the identification of an Inner Raceway Fault (IRF) and an Outer Raceway Fault (ORF) with the different fault severity levels. The conventional statistical analysis was only able to detect the existence of a fault but unable to discriminate between IRF and ORF. In the present work, a detection technique named as bearing damage index (BDI) has been proposed. The proposed BDI technique uses wavelet packet node energy coefficient analysis method. The well-known combination of Hilbert transform (HT) and Fast Fourier Transform (FFT) has been carried out in order to identify the IRF and ORF faults. The results show that wavelet packet node energy coefficients are not only sensitive to detect the faults in bearing but at the same time they are able to detect the severity level of the fault. The proposed bearing damage index method for fault identification may be considered as an ‘index’ representing the health condition of rotating machines.

Keywords