Вавиловский журнал генетики и селекции (May 2020)

Constructing the constitutively active ribosomal protein S6 kinase 2 from <i>Arabidopsis thaliana</i> (AtRPS6K2) and testing its activity <i>in vitro</i>

  • A. V. Zhigailov,
  • G. E. Stanbekova,
  • D. K. Beisenov,
  • A. S. Nizkorodova,
  • N. S. Polimbetova,
  • B. K. Iskakov

DOI
https://doi.org/10.18699/VJ20.39-o
Journal volume & issue
Vol. 24, no. 3
pp. 233 – 238

Abstract

Read online

Ribosomal protein S6 (RPS6) is the only phosphorylatable protein of the eukaryotic 40S ribosomal subunit. Ribosomes with phosphorylated RPS6 can selectively translate 5’TOP-(5’-terminal oligopyrimidine)-containing mRNAs that encode most proteins of the translation apparatus. The study of translational control of 5’TOP-mRNAs, which are preferentially translated when RPS6 is phosphorylated and cease to be translated when RPS6 is de-phosphorylated, is particularly important. In Arabidopsis thaliana, AtRPS6 is phosphorylated by kinase AtRPS6K2, which should in turn be phosphorylated by upper level kinases (AtPDK1 – at serine (S) 296, AtTOR – at threonine (T) 455 and S437) for full activation. We have cloned AtRPS6K2 cDNA gene and carried out in vitro mutagenesis replacing codons encoding S296, S437 and T455 by triplets of phosphomimetic glutamic acid (E). After the expression of both natural and mutated cDNAs in Escherichia coli cells, two recombinant proteins were isolated: native AtRPS6K2 and presumably constitutively active AtRPS6K2(S296E, S437E, T455E). The activity of these variants was tested in vitro. Both kinases could phosphorylate wheat (Triticum aestivum L.) TaRPS6 as part of 40S ribosomal subunits isolated from wheat embryos, though the non-mutated variant had less activity than phosphomimetic one. The ability of recombinant non-mutated kinase to phosphorylate TaRPS6 can be explained by its phosphorylation by bacterial kinases during the expression and isolation steps. The phosphomimetically mutated AtRPS6K2(S296E, S437E, T455E) can serve as a tool to investigate preferential translation of 5’TOP-mRNAs in wheat germ cell-free system, in which most of 40S ribosomal subunits have phosphorylated TaRPS6. Besides, such an approach has a biotechnological application in producing genetically modified plants with increased biomass and productivity through stimulation of cell growth and division.

Keywords