Journal of High Energy Physics (Dec 2020)
Surface growth scheme for bulk reconstruction and tensor network
Abstract
Abstract We propose a surface growth approach to reconstruct the bulk spacetime geometry, motivated by Huygens’ principle of wave propagation. We show that our formalism can be explicitly realized with the help of the surface/state correspondence and the one-shot entanglement distillation (OSED) method. We first construct a tensor network corresponding to a special surface growth picture with spherical symmetry and fractal feature using the OSED method and show that the resulting tensor network can be identified with the MERA-like tensor network, which gives a proof that the MERA-like tensor network is indeed a discretized version of the time slice of AdS spacetime, rather than just an analogy. Furthermore, we generalize the original OSED method to describe more general surface growth picture by using of the surface/state correspondence and the generalized RT formula, which leads to a more profound interpretation for the surface growth process and provides a concrete and intuitive way for the idea of entanglement wedge reconstruction.
Keywords