Cailiao gongcheng (Aug 2017)

Wear Resistance of Iron Matrix Composites Reinforced by Mixed-type Particles

  • CAO Xin-jian,
  • JIN Jian-feng,
  • CAO Jing-yi,
  • ZONG Ya-ping

DOI
https://doi.org/10.11868/j.issn.1001-4381.2015.001136
Journal volume & issue
Vol. 45, no. 8
pp. 62 – 67

Abstract

Read online

Ceramic particles reinforced iron matrix composites were prepared by the dynamic temperature resistant hot press technology. The wear resistance of the iron matrix composites reinforced by monolithic particles (SiC,TiC,TiN) and hybrid particles mixture (TiC+TiN, SiC+TiN, SiC+TiC) under high volume fraction of 25%, 30% and 35% were investigated. The results show that when using monolithic particle as reinforcement, the wear resistance of the TiNp/Fe composite is the best among the three monolithic composites, the TiCP/Fe is the second and the SiCP/Fe is the worst. The wear resistance of (TiC+TiN)P/Fe is better than that of the composites reinforced by corresponding monolithic particles, which represents the great effect of hybrid strengthening. When the volume fraction of particles is 30%, the wear resistance of the (TiC+TiN)P/Fe composite increases the most and the wear loss decreases by 51.9% and 44.1% than that of the TiCP/Fe and TiNp/Fe, respectively. However, the wear resistance of (SiC+TiC)P/Fe and (SiC+TiN)P/Fe composites are between that of the two corresponding monolithic composites. The microstructure of worn surfaces shows that the wear mechanism of the (TiC+TiN)P/Fe composite is abrasive wear, while that of the (SiC+TiN)P/Fe and (SiC+TiC)P/Fe are fatigue and abrasive wear.

Keywords