PLoS ONE (Jan 2019)

Multi-focus microscope with HiLo algorithm for fast 3-D fluorescent imaging.

  • Wei Lin,
  • Dongping Wang,
  • Yunlong Meng,
  • Shih-Chi Chen

DOI
https://doi.org/10.1371/journal.pone.0222729
Journal volume & issue
Vol. 14, no. 9
p. e0222729

Abstract

Read online

In this paper, we present a new multi-focus microscope (MFM) system based on a phase mask and HiLo algorithm, achieving high-speed (20 volumes per second), high-resolution, low-noise 3-D fluorescent imaging. During imaging, the emissions from the specimen at nine different depths are simultaneously modulated and focused to different regions on a single CCD chip, i.e., the CCD chip is subdivided into nine regions to record images from the different selected depths. Next, HiLo algorithm is applied to remove the background noises and to form clean 3-D images. To visualize larger volumes, the nine layers are scanned axially, realizing fast 3-D imaging. In the imaging experiments, a mouse kidney sample of ~ 60 × 60 × 16 μm3 is visualized with only 10 raw images, demonstrating substantially enhanced resolution and contrast as well as suppressed background noises. The new method will find important applications in 3-D fluorescent imaging, e.g., recording fast dynamic events at multiple depths in vivo.