Translational Psychiatry (Dec 2021)

Effects of escitalopram therapy on resting-state functional connectivity of subsystems of the default mode network in unmedicated patients with major depressive disorder

  • Jian Cui,
  • Yun Wang,
  • Rui Liu,
  • Xiongying Chen,
  • Zhifang Zhang,
  • Yuan Feng,
  • Jingjing Zhou,
  • Yuan Zhou,
  • Gang Wang

DOI
https://doi.org/10.1038/s41398-021-01754-4
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Antidepressants are often the first-line medications prescribed for patients with major depressive disorder (MDD). Given the critical role of the default mode network (DMN) in the physiopathology of MDD, the current study aimed to investigate the effects of antidepressants on the resting-state functional connectivity (rsFC) within and between the DMN subsystems. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data from 36 unmedicated MDD patients at baseline and after escitalopram treatment for 12 weeks. The rs-fMRI data were also collected from 61 matched healthy controls at the time point with the same interval. Then, we decomposed the DMN into three subsystems based on a template from previous studies and computed the rsFC within and between the three subsystems. Finally, repeated measures analysis of covariance was conducted to identify the main effect of group and time and their interaction effect. We found that the significantly reduced within-subsystem rsFC in the DMN core subsystem in patients with MDD at baseline was increased after escitalopram treatment and became comparable with that in the healthy controls, whereas the reduced within-subsystem rsFC persisted in the DMN dorsal medial prefrontal cortex (dMPFC) and medial temporal subsystems in patients with MDD following escitalopram treatment. In addition, the reduced between-subsystem rsFC between the core and dMPFC subsystem showed a similar trend of change after treatment in patients with MDD. Moreover, our main results were confirmed using the DMN regions from another brain atlas. In the current study, we found different effects of escitalopram on the rsFC of the DMN subsystems. These findings deepened our understanding of the neuronal basis of antidepressants’ effect on brain function in patients with MDD. The trial name: appropriate technology study of MDD diagnosis and treatment based on objective indicators and measurement. URL: http://www.chictr.org.cn/showproj.aspx?proj=21377 . Registration number: ChiCTR-OOC-17012566.