BMC Cancer (Dec 2017)
Recombinant human endostatin combined with radiotherapy inhibits colorectal cancer growth
Abstract
Abstract Background To examine the effects of recombinant human endostatin combined with radiotherapy on colorectal cancer HCT-116 cell xenografts in nude mice. Methods Forty male BALB/c nude mice were injected with human colorectal cancer HCT-116 cells to form xenografts and then randomized into the following 4 groups (each group comprised ten mice): a control group, an endostatin group (20 mg/kg endostatin once a day for 10 days), a radiotherapy group (a 6-Gy dose was administered via a 6-MV X-ray on day 5 post-inoculation), and a combination therapy group (radiotherapy with endostatin treatment). The tumor growth inhibition rate were detected. CD31, vascular endothelial growth factor (VEGF), and hypoxia inducible factor-1α (HIF-1α) expression and microvascular density (MVD) were evaluated by immunohistochemistry. The expression of VEGF protein was also detected by western blotting. Results The tumor growth inhibition rate in the radiotherapy with endostatin treatment group was significantly higher than those in endostatin group or radiotherapy group (77.67% vs 12.31% and 38.59%; n = 8 per group, P < 0.05). The results of immunohistochemistry showed that treatment with radiotherapy induced significant increases in CD31, VEGF, and HIF-1α expression and MVD compared with treatment with saline, while treatment with endostatin or radiotherapy with endostatin induced reductions in CD31, VEGF, and HIF-1α expression and MVD compared with treatment with saline (n = 8 per group, P < 0.05). The results of western blotting showed that VEGF protein expression in radiotherapy group was significantly increased compared with that in the control group. However, VEGF protein expression in the endostatin or radiotherapy with endostatin groups was significantly decreased compared with that in the control group (n = 8 per group, P < 0.05). Conclusions Endostatin combined with radiotherapy can significantly inhibit HCT-116 cell xenograft growth, possibly by inhibiting angiogenesis and attenuating tumor cell hypoxia.
Keywords