Solids (Jul 2024)
Taxifolin Adsorption on Nitrogenated Graphenes: Theoretical Insights
Abstract
Solid-state drug delivery systems for the drug substances transport are of great importance nowadays. In the present work, the non-covalent interactions between taxifolin (Tax) and graphene as well as nitrogenated (N-doped) graphenes were systematically studied by using a wide set of theoretical techniques. Symmetry-adapted perturbation theory (SAPT0) calculations confirmed more favorable adsorption of Tax on N-doped graphenes compared to pristine graphene. It was established that dispersion interactions play the main role in the attractive interactions (>60%), whereas electrostatic and induction forces contribute only moderately to the attraction (~25% and 7–8%, respectively). Independent gradient model (IGM) analysis visually demonstrated the existence of dispersion interactions and hydrogen bonding in the studied Tax complexes. Ab initio molecular dynamics calculations indicated stability of these complexes at different temperatures. Our results show that N-doped graphenes with the enhanced interaction energy (Eint) toward Tax are promising candidates for the technical realization of the targeted drug delivery systems.
Keywords