Biosensors (Jun 2021)

Integrating ECG Monitoring and Classification via IoT and Deep Neural Networks

  • Li-Ren Yeh,
  • Wei-Chin Chen,
  • Hua-Yan Chan,
  • Nan-Han Lu,
  • Chi-Yuan Wang,
  • Wen-Hung Twan,
  • Wei-Chang Du,
  • Yung-Hui Huang,
  • Shih-Yen Hsu,
  • Tai-Been Chen

DOI
https://doi.org/10.3390/bios11060188
Journal volume & issue
Vol. 11, no. 6
p. 188

Abstract

Read online

Anesthesia assessment is most important during surgery. Anesthesiologists use electrocardiogram (ECG) signals to assess the patient’s condition and give appropriate medications. However, it is not easy to interpret the ECG signals. Even physicians with more than 10 years of clinical experience may still misjudge. Therefore, this study uses convolutional neural networks to classify ECG image types to assist in anesthesia assessment. The research uses Internet of Things (IoT) technology to develop ECG signal measurement prototypes. At the same time, it classifies signal types through deep neural networks, divided into QRS widening, sinus rhythm, ST depression, and ST elevation. Three models, ResNet, AlexNet, and SqueezeNet, are developed with 50% of the training set and test set. Finally, the accuracy and kappa statistics of ResNet, AlexNet, and SqueezeNet in ECG waveform classification were (0.97, 0.96), (0.96, 0.95), and (0.75, 0.67), respectively. This research shows that it is feasible to measure ECG in real time through IoT and then distinguish four types through deep neural network models. In the future, more types of ECG images will be added, which can improve the real-time classification practicality of the deep model.

Keywords