BioTechnologia (Sep 2021)

Design, molecular docking, drug-likeness, and molecular dynamics studies of 1,2,4-trioxane derivatives as novel Plasmodium falciparum falcipain-2 (FP-2) inhibitors

  • Subham Ghosh,
  • Dipak Chetia,
  • Neelutpal Gogoi,
  • Mithun Rudrapal

DOI
https://doi.org/10.5114/bta.2021.108722
Journal volume & issue
Vol. 102, no. 3
pp. 257 – 275

Abstract

Read online

Despite significant progress made in drug discovery and development over the past few decades, malaria remains a life-threatening infectious disease across the globe. Because of the widespread emergence of drug-resistant strains of Plasmodium falciparum, the clinical utility of existing drug therapies including Artemisinin-based Combination Therapies (ACTs) in the treatment of malaria has been increasingly limited. It has become a serious health concern which, therefore, necessitates the development of novel drug molecules and/or alternative therapies to combat, particularly resistant P. falciparum. The objective of the present study was to develop 1,2,4-trioxane derivatives as novel antimalarial agents that would be effective against resistant P. falciparum. In our study, 15 new trioxane derivatives were designed by molecular modification of the 1,2,4-trioxane scaffold as possible antimalarial agents. Molecular modeling studies of trioxane derivatives were performed based on the CADD approach using Biovia Discovery Studio (DS) 2018 software. The protein-ligand docking study was performed against P. falciparum falcipain 2 (FP-2) using the simulation-based docking protocol LibDock by the flexible docking method. The assessment of drug-likeness, ADMET properties, and toxicity was also performed. Furthermore, the compounds CC3 and CC7, which showed the best binding affinity against the target P. falciparum FP-2, were investigated by molecular dynamics (MD) simulation studies followed by the calculation of MM-PBSA binding free energy of protein-ligand complexes using DS 2020. Results of the docking study showed that among the 15 com-pounds, three trioxane derivatives were found to possess promising binding affinity with LibDock scores ranging from 117.16 to 116.90. Drug-likeness, ADMET, and toxicity properties were found to be satisfactory for all the compounds. Among the 15 compounds, two compounds, namely CC3 and CC7, showed the highest binding affinity against FP-2 with LibDock score of 117.166 and 117.200, respectively. The Libdock score of the co-crystal inhibitor was 114.474. MD studies along with MM-PBSA calculations of binding energies further confirmed the antimalarial potential of the compounds CC3 and CC7, with the formation of well-defined and stable receptor-ligand interactions against the P. falciparum FP-2 enzyme. Additionally, the selectivity of trioxane hits identified as potential inhibitors of P. falciparum cysteine protease FP-2 was determined on human cysteine proteases such as cathepsins (Cat K and Cat L), which are host homologous. Finally, it was concluded that the newly designed 1,2,4-trioxane derivatives can be further studied for in vitro and in vivo antimalarial activities for their possible development as potent antimalarial agents effective against resistant P. falciparum.

Keywords