Molecules (Nov 2017)

Enantioselective Biosynthesis of l-Phenyllactic Acid by Whole Cells of Recombinant Escherichia coli

  • Yibo Zhu,
  • Ying Wang,
  • Jiayuzi Xu,
  • Jiahao Chen,
  • Limei Wang,
  • Bin Qi

DOI
https://doi.org/10.3390/molecules22111966
Journal volume & issue
Vol. 22, no. 11
p. 1966

Abstract

Read online

Background: l-Phenyllactic acid (l-PLA)—a valuable building block in the pharmaceutical and chemical industry—has recently emerged as an important monomer in the composition of the novel degradable biocompatible material of polyphenyllactic acid. However, both normally chemically synthesized and naturally occurring phenyllactic acid are racemic, and the product yields of reported l-PLA synthesis processes remain unsatisfactory. Methods: We developed a novel recombinant Escherichia coli strain, co-expressing l-lactate dehydrogenase (l-LDH) from Lactobacillus plantarum subsp. plantarum and glucose dehydrogenase (GDH) from Bacillus megaterium, to construct a recombinant oxidation/reduction cycle for whole-cell biotransformation of phenylpyruvic acid (PPA) into chiral l-PLA in an enantioselective and continuous manner. Results: During fed-batch bioconversion with intermittent PPA feeding, l-PLA yield reached 103.8 mM, with an excellent enantiomeric excess of 99.7%. The productivity of l-PLA was as high as 5.2 mM·h−1 per OD600 (optical density at 600 nm) of whole cells. These results demonstrate the efficient production of l-PLA by the one-pot biotransformation system. Therefore, this stereoselective biocatalytic process might be a promising alternative for l-PLA production.

Keywords