Toxics (Jan 2022)
Prioritizing the Effects of Emerging Contaminants on Estuarine Production under Global Warming Scenarios
Abstract
Due to non-linear interactions, the effects of contaminant mixtures on aquatic ecosystems are difficult to assess, especially under temperature rise that will likely exacerbate the complexity of the responses. Yet, under the current climatic crisis, assessing the effects of water contaminants and temperature is paramount to understanding the biological impacts of mixtures of stressors on aquatic ecosystems. Here, we use an ecosystem model followed by global sensitivity analysis (GSA) to prioritize the effects of four single emerging contaminants (ECs) and their mixture, combined with two temperature rise scenarios, on the biomass production of a NE Atlantic estuary. Scenarios ran for 10 years with a time-step of 0.1 days. The results indicate that macroinvertebrate biomass was significantly explained by the effect of each single EC and by their mixture but not by temperature. Globally, the most adverse effects were induced by two ECs and by the mixture of the four ECs, although the sensitivity of macroinvertebrates to the tested scenarios differed. Overall, the present approach is useful to prioritize the effects of stressors and assess the sensitivity of the different trophic groups within food webs, which may be of relevance to support decision making linked to the sustainable management of estuaries and other aquatic systems.
Keywords