Applied Mathematics in Science and Engineering (Dec 2024)
A modified projective forward-backward splitting algorithm for variational inclusion problems to predict Parkinson's disease
Abstract
This research studies variational inclusion problems, which is a branch of optimization. A modified projective forward-backward splitting algorithm is constructed to solve this problem. The algorithm adds the inertial technique for speeding up the convergence, and the projective method for several regularization machine learning models to meet good model fitting. To evaluate the performance of the classification models employed in this research, four evaluation metrics are computed: accuracy, F1-score, recall, and precision. The highest performance value of 92.86% accuracy, 62.50% precision, 100% recall, and 76.92% F1-score shows that our algorithm performs better than the other machine learning models.
Keywords