The Milk of Cows Immunized with Trivalent Inactivated Vaccines Provides Broad-Spectrum Passive Protection against Hand, Foot, and Mouth Disease in Neonatal Mice
Xiaohui Wei,
Jing Wu,
Wanjun Peng,
Xin Chen,
Lihong Zhang,
Na Rong,
Hekai Yang,
Gengxin Zhang,
Gaoying Zhang,
Binbin Zhao,
Jiangning Liu
Affiliations
Xiaohui Wei
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Jing Wu
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Wanjun Peng
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Xin Chen
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Lihong Zhang
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Na Rong
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Hekai Yang
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Gengxin Zhang
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Gaoying Zhang
Wuhan Servicebio Technology Co., Ltd., Wuhan 430079, China
Binbin Zhao
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Jiangning Liu
NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China
Hand, foot, and mouth disease (HFMD) is a contagious viral infection predominantly affecting infants and young children, caused by multiple enteroviruses, including Enterovirus 71 (EV71), Coxsackievirus A16 (CA16), Coxsackievirus A10 (CA10), and Coxsackievirus A6 (CA6). The high pathogenicity of HFMD has garnered significant attention. Currently, there is no specific treatment or broad-spectrum preventive measure available for HFMD, and existing monovalent vaccines have limited impact on the overall incidence or prevalence of the disease. Consequently, with the emergence of new viral strains driven by vaccine pressure, there is an urgent need to develop strategies for the rapid response and control of new outbreaks. In this study, we demonstrated the broad protective effect of maternal antibodies against three types of HFMD by immunizing mother mice with a trivalent inactivated vaccine targeting EV71, CA16, and CA10, using a neonatal mouse challenge model. Based on the feasibility of maternal antibodies as a form of passive immunization to prevent HFMD, we prepared a multivalent antiviral milk by immunizing dairy cows with the trivalent inactivated vaccine to target multiple HFMD viruses. In the neonatal mouse challenge model, this immunized milk exhibited extensive passive protection against oral infections caused by the three HFMD viruses. Compared to vaccines, this strategy may offer a rapid and broadly applicable approach to providing passive immunity for the prevention of HFMD, particularly in response to the swift emergence and spread of new variants.