International Journal of Molecular Sciences (Oct 2019)

The Potential of the FSP1cre-<i>Pparb/d<sup>−/−</sup></i> Mouse Model for Studying Juvenile NAFLD

  • Jiapeng Chen,
  • Yan Zhuang,
  • Ming Keat Sng,
  • Nguan Soon Tan,
  • Walter Wahli

DOI
https://doi.org/10.3390/ijms20205115
Journal volume & issue
Vol. 20, no. 20
p. 5115

Abstract

Read online

Non-alcoholic fatty liver disease (NAFLD) can progress from steatosis to non-alcoholic steatohepatitis (NASH) characterized by liver inflammation, possibly leading to cirrhosis and hepatocellular carcinoma (HCC). Mice with impaired macrophage activation, when fed a high-fat diet, develop severe NASH. Evidence is mounting that Kupffer cells are implicated. However, it is unknown whether the resident CD68+ or bone marrow-derived CD11b+ Kupffer cells are involved. Characterization of the FSP1cre-Pparb/d−/− mouse liver revealed that FSP1 is expressed in CD11b+ Kupffer cells. Although these cells only constitute a minute fraction of the liver cell population, Pparb/d deletion in these cells led to remarkable hepatic phenotypic changes. We report that a higher lipid content was present in postnatal day 2 (P2) FSP1cre-Pparb/d−/− livers, which diminished after weaning. Quantification of total lipids and triglycerides revealed that P2 and week 4 of age FSP1cre-Pparb/d−/− livers have higher levels of both. qPCR analysis also showed upregulation of genes involved in fatty acid β-oxidation, and fatty acid and triglyceride synthesis pathways. This result is further supported by western blot analysis of proteins in these pathways. Hence, we propose that FSP1cre-Pparb/d−/− mice, which accumulate lipids in their liver in early life, may represent a useful animal model to study juvenile NAFLD.

Keywords