The Scientific World Journal (Jan 2014)

Functional Characterization of Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) N- and C-Terminal Domains during Xenopus laevis Development

  • M. A. Nieuwesteeg,
  • J. A. Willson,
  • M. Cepeda,
  • M. A. Fox,
  • S. Damjanovski

DOI
https://doi.org/10.1155/2014/467907
Journal volume & issue
Vol. 2014

Abstract

Read online

Extracellular matrix (ECM) remodeling is essential for facilitating developmental processes. ECM remodeling, accomplished by matrix metalloproteinases (MMPs), is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). While the TIMP N-terminal domain is involved in inhibition of MMP activity, the C-terminal domain exhibits cell-signaling activity, which is TIMP and cell type dependent. We have previously examined the distinct roles of the Xenopus laevis TIMP-2 and -3 C-terminal domains during development and here examined the unique roles of TIMP-1 N- and C-terminal domains in early X. laevis embryos. mRNA microinjection was used to overexpress full-length TIMP-1 or its individual N- or C-terminal domains in embryos. Full-length and C-terminal TIMP-1 resulted in increased lethality compared to N-terminal TIMP-1. Overexpression of C-terminal TIMP-1 resulted in significant decreases in mRNA levels of proteolytic genes including TIMP-2, RECK, MMP-2, and MMP-9, corresponding to decreases in MMP-2 and -9 protein levels, as well as decreased MMP-2 and MMP-9 activities. These trends were not observed with the N-terminus. Our research suggests that the individual domains of TIMP-1 are capable of playing distinct roles in regulating the ECM proteolytic network during development and that the unique functions of these domains are moderated in the endogenous full-length TIMP-1 molecule.