Ornamental Plant Research (Jan 2022)
Comparative transcriptome and proteome analysis of lily clones inoculated with Fusarium oxysporum f. sp. lilii
Abstract
Basal bulb rot is the major factor restricting the production of lily, caused by Fusarium oxysporum f. sp. lilii. To systematically analyze the transcriptomic and proteomic responses of lily clones to F. oxysporum, we constructed six RNA-seq libraries and four iTRAQ proteomic libraries using lily resistant and susceptible clones sampled at 0, 24 and 48 h post-inoculation (hpi) with F. oxysporum respectively. 137,715 unigenes were generated, of which 7,667 were differentially expressed. 1,679 and 4,051 differentially expressed genes (DEGs) between resistant and susceptible clones were isolated from samples collected at 0 and 48 hpi. Four hundred and thirty three and 155 DEGs were identified in resistant clones sampled at 24 and 48 hpi separately while 550 and 799 DEGs were isolated in the susceptible clones sampled at 24 and 48 hpi respectively. The results of iTRAQ analysis revealed 7,482 proteins in resistant and susceptible clones. Data analysis of transcriptome and proteome indicated that 5,735 proteins corresponded to mRNAs. Three hundred and sixteen and 1,052 DEGs had corresponding DEPs. At 48 hpi, the resistant clones showed 155 DEGs and 108 corresponding DEPs, while the susceptible clones showed 799 DEGs and 316 corresponding DEPs. In general, these results enhance comprehension of the defense response of lily resistant clones to F. oxysporum infection and provide valuable sequence data for studying the resistance mechanism.
Keywords