Applied Sciences (Nov 2023)

Effect of Wood Densification and GFRP Reinforcement on the Embedment Strength of Poplar CLT

  • Akbar Rostampour-Haftkhani,
  • Farshid Abdoli,
  • Mohammad Arabi,
  • Vahid Nasir,
  • Maria Rashidi

DOI
https://doi.org/10.3390/app132212249
Journal volume & issue
Vol. 13, no. 22
p. 12249

Abstract

Read online

Embedment strength is an important factor in the design and performance of connections in timber structures. This study assesses the embedment strength of lag screws in three-ply cross-laminated timber (CLT) composed of densified poplar wood with densification ratios of 25% and 50%, under both longitudinal (L) and transverse (T) loading conditions. The embedment strength was thereafter compared with that of CLT reinforced with glass-fiber-reinforced polymer (GFRP). The experimental data was compared with results obtained using different models for calculating embedment strength. The findings indicated that the embedment strength of CLT specimens made of densified wood and GFRP was significantly greater than that of control specimens. CLT samples loaded in the L direction showed higher embedment strength compared to those in the T direction. In addition, 50% densification had the best performance, followed by 25% densification and GFRP reinforcement. Modelling using the NDS formula yielded the highest accuracy (mean absolute percentage error = 10.31%), followed by the Ubel and Blub (MAPE = 21%), Kennedy (MAPE = 28.86%), CSA (MAPE = 32.68%), and Dong (MAPE = 40.07%) equations. Overall, densification can be considered as an alternative to GFRP reinforcement in order to increase the embedment strength in CLT.

Keywords