Electronic Journal of Differential Equations (Jul 2020)
Ground state solutions for quasilinear Schrodinger equations with periodic potential
Abstract
This article concerns the quasilinear Schrodinger equation $$\displaylines{ -\Delta u-u\Delta (u^2)+V(x)u=K(x)|u|^{2\cdot2^*-2}u+g(x,u),\quad x\in\mathbb{R}^N, \cr u\in H^1(\mathbb{R}^N),\quad u>0, }$$ where V and K are positive, continuous and periodic functions, g(x,u) is periodic in x and has subcritical growth. We use the generalized Nehari manifold approach developed by Szulkin and Weth to study the ground state solution, i.e. the nontrivial solution with least possible energy.