Journal of Diabetes Research (Jan 2014)

Decreased Neuronal Bursting and Phase Synchrony in the Hippocampus of Streptozotocin Diabetic Rats

  • Zhimei Qiao,
  • Kangning Xie,
  • Kai Liu,
  • Guoliang Li

DOI
https://doi.org/10.1155/2014/626108
Journal volume & issue
Vol. 2014

Abstract

Read online

Diabetic encephalopathy is one of the complications of diabetes. Cognitive dysfunction is the main consequence. Previous findings from neuroanatomical and in vitro electrophysiological studies showed that the structure and function of the hippocampus is impaired in diabetes, which may underlie the cognitive dysfunction induced by diabetes. However the study of electrophysiological abnormality of hippocampal neurons in intact networks is sparse. In the current study, we recorded the spontaneous firing of neurons in hippocampal CA1 area in anesthetized streptozotozin (STZ)-diabetic and age-matched control rats. Profound reduction in burst activity was found in diabetic rats. Compared to control rats, the intra-burst inter-spike intervals were prolonged significantly in diabetic rats, while the burst ratio and the mean number of spikes within a burst decreased significantly. Treatment with APP 17-mer peptide retarded the effects of diabetes on these parameters. In addition, the average PLV of diabetic rats was lower than that of control rats. These findings provide in vivo electrophysiological evidence for the impairment of hippocampal function in STZ-diabetic rats, and may have some implications in the mechanisms associated with cognitive deficits in diabetes.