Energies (May 2025)
Teager–Kaiser Energy Operator-Based Short-Circuit Fault Localization Method for Multi-Circuit Parallel Cables
Abstract
Medium-voltage cables in hydropower plants are typically arranged in multi-circuit configurations to ensure reliability, yet their exposure to harsh operational conditions accelerates insulation degradation and increases partial discharge risks. Traditional fault localization methods, such as the traveling wave method using wavelet transform to process fault signals, suffer from wavefront distortion due to inter-line reflections and noise interference in multi-circuit systems, because wavelet-based techniques are limited by preset basis functions and environmental noise. To address these challenges, a fault localization method for multi-circuit parallel cables based on the Teager–Kaiser Energy Operator (TKEO) is proposed in this paper. First, the fault signal is decoupled using Clarke transformation to suppress common-mode interference, obtaining the α component. Subsequently, the α component is subjected to wavelet transform to obtain the high-frequency components, which are then optimized using the TKEO. The TKEO is applied to optimize the wavelet-transformed signal, enhancing transient energy variations to precisely identify the arrival time of the fault wavefront at measurement points, thereby enabling accurate fault localization. The results of the four types of fault experiments indicate that the use of the TKEO to optimize the wavelet transform of the traveling wave method improved the accuracy of fault localization.
Keywords