The use of the Maisotsenko cycle (M-Cycle) in traditional wet cooling towers (TWCTs) has the potential to reduce the costs of electricity generation by cooling water below the inlet air’s wet-bulb temperature. TWCTs cannot provide sufficient cooling capacity for the increasing demand for cooling energy in the power and industrial sectors—especially in hot and wet climates. Due to this fact, an experimental system of an M-Cycle cooling tower (MCT) with parallel counter-flow arrangement fills was constructed in order to provide perspective on the optimal length of dry channels (ldry), thermal performance under different conditions, and pressure drops of the MCT. Results showed that the optimal value of ldry was 2.4 m, and the maximum wet-bulb effectiveness was up to 180%. In addition, the impact of air velocity in wet channels on the pressure drops of the novel fills was also summarized. This study confirms the great potential of using the M-Cycle in TWCTs, and provides a guideline for the industrial application and performance improvement of MCTs.