Journal of Astronomy and Space Sciences (Sep 2002)
A Role of Proto-Accretion Disk Heating Proto-Planets to Evaporation
Abstract
We study a role of the proto-accretion disk during the formation of the planetary system, which is motivated with recent X-ray observations. There is an observational correlation of the mass of extrasolar planets with their orbital period, which also shows the minimum orbital period. This is insufficiently accounted for by the selection effect alone. Besides, most of planetary formation theories predict the lower limit of semimajor axes of the planetary orbits around 0.01 AU. While the migration theory involving the accretion disk is the most favorable theory, it causes too fast migration and requires the braking mechanism to halt the planet ~ 0.01 AU. The induced gap in the accretion disk due to the planet and/or the truncated disk are desperately required to stop the planet. We explore the planetary evaporation in the accretion disk as another possible scenario to explain the servational lack of massive close-in planets. We calculate the location where the planet is evaporated when the mass and the radius of the planet are given, and find that the evaporation location is approximately proportional to the mass of the planet as mp-1.3 and the radius of the planet as rp1.3. Therefore, we conclude that even the standard cool accretion disk becomes marginally hot to make the small planet evaporate at ~ 0.01 AU. We discuss other auxiliary mechanisms which may provide the accretion disk with extra heats other than the viscous friction, which may consequently make a larger planet evaporate.
Keywords