BMC Chemistry (Dec 2023)

Nano-level assay of attention-deficit/hyperactivity disorder medicament, atomoxetine by molecular-size-based resonance rayleigh scattering strategy. Employment in content uniformity, dosage form, and plasma analysis

  • Ahmed A. Abu-hassan

DOI
https://doi.org/10.1186/s13065-023-01094-y
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The psychoanaleptic medication atomoxetine (ATX) is prescribed to cure attention-deficit hyperactivity syndrome. ATX works by selective prevention of norepinephrine reuptake. It acts by raising the brain’s natural level of norepinephrine, which is necessary for behavior regulation. In this study, a sensitive and practical experimental method was employed to analyze the presence of ATX. The approach utilized a green chemistry-compatible technique, known as a one-pot experiment. The main principle behind this method was the use of molecular-size-dependant resonance Rayleigh scattering (RRS) phenomenon, which occurred due to the interaction between the dual complex of Cilefa Pink B and ATX. When ATX medication and Cilefa Pink B were combined in an acidic environment, they formed an association complex, leading to an amplification of the RRS signal. This amplification directly correlated with the concentration of ATX, specifically within the range of 40-1250 ng/mL. The RRS signal was monitored at a wavelength of 352 nm. The sensitivity of the method was demonstrated by the determination of the limit of detection (LOD) at 12.9 ng/mL and the limit of quantitation (LOQ) at 39.2 ng/mL. The variables of the method were thoroughly investigated and optimized. To ensure the reliability of the method, it was validated according to the International Council for Harmonisation (ICH) guidelines. Furthermore, the method was successfully applied to analyze ATX in its prescribed dosage form. The achievement of using the established resonance Rayleigh scattering (RRS) technology to analyze the target drug in plasma and ensure content uniformity was a remarkable feat.

Keywords