Frontiers in Immunology (Jun 2024)

Integrated analysis of single-cell RNA-seq, bulk RNA-seq, Mendelian randomization, and eQTL reveals T cell-related nomogram model and subtype classification in rheumatoid arthritis

  • Qiang Ding,
  • Qingyuan Xu,
  • Yini Hong,
  • Honghai Zhou,
  • Xinyu He,
  • Chicheng Niu,
  • Zhao Tian,
  • Hao Li,
  • Ping Zeng,
  • Jinfu Liu

DOI
https://doi.org/10.3389/fimmu.2024.1399856
Journal volume & issue
Vol. 15

Abstract

Read online

ObjectiveRheumatoid arthritis (RA) is a systemic disease that attacks the joints and causes a heavy economic burden on humans worldwide. T cells regulate RA progression and are considered crucial targets for therapy. Therefore, we aimed to integrate multiple datasets to explore the mechanisms of RA. Moreover, we established a T cell-related diagnostic model to provide a new method for RA immunotherapy.MethodsscRNA-seq and bulk-seq datasets for RA were obtained from the Gene Expression Omnibus (GEO) database. Various methods were used to analyze and characterize the T cell heterogeneity of RA. Using Mendelian randomization (MR) and expression quantitative trait loci (eQTL), we screened for potential pathogenic T cell marker genes in RA. Subsequently, we selected an optimal machine learning approach by comparing the nine types of machine learning in predicting RA to identify T cell-related diagnostic features to construct a nomogram model. Patients with RA were divided into different T cell-related clusters using the consensus clustering method. Finally, we performed immune cell infiltration and clinical correlation analyses of T cell-related diagnostic features.ResultsBy analyzing the scRNA-seq dataset, we obtained 10,211 cells that were annotated into 7 different subtypes based on specific marker genes. By integrating the eQTL from blood and RA GWAS, combined with XGB machine learning, we identified a total of 8 T cell-related diagnostic features (MIER1, PPP1CB, ICOS, GADD45A, CD3D, SLFN5, PIP4K2A, and IL6ST). Consensus clustering analysis showed that RA could be classified into two different T-cell patterns (Cluster 1 and Cluster 2), with Cluster 2 having a higher T-cell score than Cluster 1. The two clusters involved different pathways and had different immune cell infiltration states. There was no difference in age or sex between the two different T cell patterns. In addition, ICOS and IL6ST were negatively correlated with age in RA patients.ConclusionOur findings elucidate the heterogeneity of T cells in RA and the communication role of these cells in an RA immune microenvironment. The construction of T cell-related diagnostic models provides a resource for guiding RA immunotherapeutic strategies.

Keywords