Results in Physics (Apr 2024)

Theoretical investigation of multiplexed quantum light source in fiber ring cavities with oscillating dispersion

  • Chuan Qu,
  • Dongqin Guo,
  • Hui Zhang,
  • Shuaixi Liang,
  • Yuanyuan Li,
  • Shenghai Zhang,
  • Zhengtong Wei

Journal volume & issue
Vol. 59
p. 107554

Abstract

Read online

Correlated photon pairs are the core resources for photonic quantum information technology. Multiplexed quantum light sources can appreciably improve the efficiency of quantum information processing. Here, we develop a coupled-mode mean-field model and its corresponding semiclassical theory analysis to investigate the multiple parametric-gain sidebands in dispersion-oscillation fiber-ring cavities. We present a cycle transfer matrix method to give the analytic expressions for parametric gain. From this, we can reach a physical insight, that is additional degree of freedom introduced by the modulation along fiber length is responsible for the multiple parametric-gain sidebands, where the underlying mechanism is the quasi-phase matching of four-wave mixing. Two twin signal and idler photons generated from parametric-gain sidebands are appreciably of frequency and temporal correlation, revealing promising applications in frequency-multiplexed photon pair sources. When we construct an optical cavity with spliced single mode fiber and dispersion shifted fibers, numerous parametric-gain sidebands grow in the vicinity of zero group-velocity-dispersion wavelengths of two fibers, i.e., 1310 nm and 1550 nm, both corresponding to low transmission loss windows of fibers. Therefore, frequency-multiplexed quantum light sources established on dispersion-oscillation fiber-ring cavities have the advantages in economy, remote transmission, scalability and compatibility with fiber communication network. Our work offers inspiration for the development of a multiplexed quantum light source.

Keywords