Journal of Applied and Computational Mechanics (Oct 2022)

Thermomechanical Stresses of Multilayered Wellbore Structure ‎of Underground Hydrogen Storage – A Simplified Solution Based ‎on Recursive Algorithm

  • Lih Chi Sim,
  • Wei Hong Yeo,
  • Judha Purbolaksono,
  • Lip Huat Saw,
  • Jing Yuen Tey,
  • Jer Vui Lee,
  • Ming Chian Yew

DOI
https://doi.org/10.22055/jacm.2022.39453.3411
Journal volume & issue
Vol. 8, no. 4
pp. 1287 – 1298

Abstract

Read online

Large scale of hydrogen storage is needed to balance the energy supply-demand fluctuation issues. Among few of the large scale storage systems, depleted oil and gas wells are widely employed. The construction of wellbore is normally in cylindrical shape and formed by layers of cement, casing and formation. As failure of wellbore is costly, proper structural integrity assessment is essential. In this article, an analytical solution derived based on recursive algorithm for estimating the thermomechanical stresses across the wellbore structure was proposed and verified. The temperature and stresses distribution results obtained from proposed analytical solution were compared with numerical results and they were found in good agreement. The percentage of difference was observed to be less than 0.1%. Besides that, a comparison study was performed on two, four and six layers wellbore structure. It was observed that four and six layers structure can produce much lower tangential tensile stress on the steel casing of the wellbore.

Keywords