Biomolecules (Sep 2024)

3D-Cultured MC3T3-E1-Derived Exosomes Promote Endothelial Cell Biological Function under the Effect of LIPUS

  • Xiaohan Liu,
  • Rui Cheng,
  • Hongjuan Cao,
  • Lin Wu

DOI
https://doi.org/10.3390/biom14091154
Journal volume & issue
Vol. 14, no. 9
p. 1154

Abstract

Read online

Porous Ti-6Al-4V scaffold materials can be used to heal massive bone defects because they can provide space for vascularisation and bone formation. During new bone tissue development, rapid vascular ingrowth into scaffold materials is very important. Osteoblast-derived exosomes are capable of facilitating angiogenesis–osteogenesis coupling. Low-intensity pulsed ultrasound (LIPUS) is a physical therapy modality widely utilised in the field of bone regeneration and has been proven to enhance the production and functionality of exosomes on two-dimensional surfaces. The impact of LIPUS on exosomes derived from osteoblasts cultured in three dimensions remains to be elucidated. In this study, exosomes produced by osteoblasts on porous Ti-6Al-4V scaffold materials under LIPUS and non-ultrasound stimulated conditions were co-cultured with endothelial cells. The findings indicated that the exosomes were consistently and stably taken up by the endothelial cells. Compared to the non-ultrasound group, the LIPUS group facilitated endothelial cell proliferation and angiogenesis. After 24 h of co-culture, the migration ability of endothelial cells in the LIPUS group was 17.30% higher relative to the non-ultrasound group. LIPUS may represent a potentially viable strategy to promote the efficacy of osteoblast-derived exosomes to enhance the angiogenesis of porous Ti-6Al-4V scaffold materials.

Keywords