Journal of High Energy Physics (Oct 2021)
Three-point functions of higher-spin spinor current multiplets in N $$ \mathcal{N} $$ = 1 superconformal theory
Abstract
Abstract In this paper, we study the general form of three-point functions of conserved current multiplets S α(k) = S (α1…αk) of arbitrary rank in four-dimensional N $$ \mathcal{N} $$ = 1 superconformal theory. We find that the correlation function of three such operators S ¯ α ̇ k z 1 S β k + l z 2 S ¯ γ ̇ l z 3 $$ \left\langle {\overline{S}}_{\dot{\alpha}(k)}\left({z}_1\right){S}_{\beta \left(k+l\right)}\left({z}_2\right){\overline{S}}_{\dot{\gamma}(l)}\left({z}_3\right)\right\rangle $$ is fixed by the superconformal symmetry up to a single complex coefficient though the precise form of the correlator depends on the values of k and l. In addition, we present the general structure of mixed correlators of the form S ¯ α ̇ k z 1 S α k z 2 L z 3 $$ \left\langle {\overline{S}}_{\dot{\alpha}(k)}\left({z}_1\right){S}_{\alpha (k)}\left({z}_2\right)L\left({z}_3\right)\right\rangle $$ and S ¯ α ̇ k z 1 S α k z 2 J γ γ ̇ z 3 $$ \left\langle {\overline{S}}_{\dot{\alpha}(k)}\left({z}_1\right){S}_{\alpha (k)}\left({z}_2\right){J}_{\gamma \dot{\gamma}}\left({z}_3\right)\right\rangle $$ , where L is the flavour current multiplet and J γ γ ̇ $$ {J}_{\gamma \dot{\gamma}} $$ is the supercurrent.
Keywords