Известия Иркутского государственного университета: Серия "Математика" (Jun 2021)

A Note on Anti-Berge Equilibrium for Bimatrix Game

  • R. Enkhbat

DOI
https://doi.org/10.26516/1997-7670.2021.36.3
Journal volume & issue
Vol. 36, no. 1
pp. 3 – 13

Abstract

Read online

Game theory plays an important role in applied mathematics, economics and decision theory. There are many works devoted to game theory. Most of them deals with a Nash equilibrium. A global search algorithm for finding a Nash equilibrium was proposed in [13]. Also, the extraproximal and extragradient algorithms for the Nash equilibrium have been discussed in [3]. Berge equilibrium is a model of cooperation in social dilemmas, including the Prisoner’s Dilemma games [15]. The Berge equilibrium concept was introduced by the French mathematician Claude Berge [5] for coalition games. The first research works of Berge equilibrium were conducted by Vaisman and Zhukovskiy [18; 19]. A method for constructing a Berge equilibrium which is Pareto-maximal with respect to all other Berge equilibriums has been examined in Zhukovskiy [10]. Also, the equilibrium was studied in [16] from a view point of differential games. Abalo and Kostreva [1; 2] proved the existence theorems for pure-strategy Berge equilibrium in strategic-form games of differential games. Nessah [11] and Larbani, Tazdait [12] provided with a new existence theorem. Applications of Berge equilibrium in social science have been discussed in [6; 17]. Also, the work [7] deals with an application of Berge equilibrium in economics. Connection of Nash and Berge equilibriums has been shown in [17]. Most recently, the Berge equilibrium was examined in Enkhbat and Batbileg [14] for Bimatrix game with its nonconvex optimization reduction. In this paper, inspired by Nash and Berge equilibriums, we introduce a new notion of equilibrium so-called Anti-Berge equilibrium. The main goal of this paper is to examine Anti-Berge equilibrium for bimatrix game. The work is organized as follows. Section 2 is devoted to the existence of Anti-Berge equilibrium in a bimatrix game for mixed strategies. In Section 3, an optimization formulation of Anti-Berge equilibrium has been formulated.

Keywords