Arabian Journal of Chemistry (Dec 2020)
One-pot multicomponent synthesis of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives and their biological evaluation as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents
Abstract
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (1–13) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).